The date today is 12-apr-01. Your license expires on 15-jul-07. ------------------------ COPYRIGHT NOTICE --------------------------------- Los Alamos National Laboratory This program was prepared by the Regents of the University of California at Los Alamos National Laboratory (the University) under Contract No. W-7405-ENG-36 with the U.S. Department of Energy (DOE). The University has certain rights in the program pursuant to the contract and the program should not be copied or distributed outside your organization. All rights in the program are reserved by the DOE and the University. Neither the U.S. Government nor the University makes any warranty, express or implied, or assumes any liability or responsibility for the use of this software. ******************************************************* * --- SOLVE --- * * * * Automated structure solution for MAD and MIR * * * * Please type "solvehelp" for on-line help * * or see "http://solve.lanl.gov" * ******************************************************* (version 2.00 of 12-Apr-2001 / Size = 6) Tom Terwilliger, Los Alamos National Laboratory, "terwilliger@LANL.gov" Space group number is: 5 Space group name from file name is: c2 The fft containing the asymmetric unit of the map runs from: 0 to 95 in x, where the cell translation is 96 0 to 17 in y, where the cell translation is 36 0 to 24 in z, where the cell translation is 48 You may wish to include in your "solve.setup" file the following line: FFTGRID 0 95 96 0 17 36 0 24 48 The EZD map file containing the output map runs from: 0 to 95 in x, where the cell translation is 96 0 to 17 in y, where the cell translation is 36 0 to 24 in z, where the cell translation is 48 You may wish to include in your "solve.setup" file the following line: EZDGRID 0 95 0 17 0 24 The patterson containing the asymmetric unit of the map runs from: 0 to 95 in x, where the cell translation is 96 0 to 18 in y, where the cell translation is 36 0 to 24 in z, where the cell translation is 48 You may wish to include in your "solve.setup" file the following line: PATTGRID 0 95 96 0 18 36 0 24 48 Rescaling standard dataset to put it on approximate absolute scale. NRES = 100; expected = 98000.00 ; observed in lowest resolution shell = 431723.1 ... Scale factor = 0.2269974 -------------------------------------------------- *** Analysis of this scaled MAD data set *** Fbar,sigma,Delano,sigma for 3 wavelengths written to: mad_fbar.scl F+,sigma,F-,sigma for 3 wavelengths written to: mad_fpfm.scl ** Completeness of Fbar data at each wavelength: ** Completeness of dataset 1 ( F > 2.000000 * sigma) set 1 with 2 se atoms, lambda 1 Reflections observed: Possible Found % complete shell dmin 1 6.000 239 233 97.5 2 4.500 317 312 98.4 3 4.200 120 119 99.2 4 3.975 120 118 98.3 5 3.750 155 155 100.0 6 3.600 112 108 96.4 7 3.450 143 138 96.5 8 3.300 172 167 97.1 9 3.150 190 188 98.9 10 3.000 254 250 98.4 total 1822 1788 98.1 Completeness of dataset 2 ( F > 2.000000 * sigma) set 2 Reflections observed: Possible Found % complete shell dmin 1 6.000 239 233 97.5 2 4.500 317 309 97.5 3 4.200 120 116 96.7 4 3.975 120 118 98.3 5 3.750 155 151 97.4 6 3.600 112 110 98.2 7 3.450 143 139 97.2 8 3.300 172 167 97.1 9 3.150 190 186 97.9 10 3.000 254 248 97.6 total 1822 1777 97.5 Completeness of dataset 3 ( F > 2.000000 * sigma) set 3 Reflections observed: Possible Found % complete shell dmin 1 6.000 239 235 98.3 2 4.500 317 308 97.2 3 4.200 120 117 97.5 4 3.975 120 117 97.5 5 3.750 155 153 98.7 6 3.600 112 108 96.4 7 3.450 143 136 95.1 8 3.300 172 167 97.1 9 3.150 190 188 98.9 10 3.000 254 249 98.0 total 1822 1778 97.6 ** R-factors for F-bar data dispersive differences ** Dispersive differences lambda 2 - lambda 1 Differences by shell: shell dmin nobs Fbar delta R scale min max 1 6.000 223 204.022 9.680 0.047 0.999 0.974 1.021 2 4.500 301 196.463 10.319 0.053 1.001 0.982 1.026 3 4.200 113 190.163 9.070 0.048 1.002 0.986 1.020 4 3.975 113 163.514 7.814 0.048 1.001 0.986 1.019 5 3.750 151 165.220 8.888 0.054 1.001 0.983 1.020 6 3.600 105 144.866 6.088 0.042 0.999 0.982 1.015 7 3.450 133 121.546 5.633 0.046 1.000 0.985 1.018 8 3.300 160 118.404 5.851 0.049 1.000 0.982 1.017 9 3.150 183 120.482 5.854 0.049 1.000 0.979 1.017 10 3.000 242 110.740 5.291 0.048 1.000 0.974 1.019 Total: 1724 155.867 7.651 0.049 1.000 Dispersive differences lambda 3 - lambda 1 Differences by shell: shell dmin nobs Fbar delta R scale min max 1 6.000 228 210.898 13.433 0.064 0.999 0.975 1.019 2 4.500 303 197.484 12.483 0.063 1.000 0.978 1.027 3 4.200 116 194.246 12.717 0.065 1.002 0.977 1.021 4 3.975 115 161.390 11.213 0.069 1.001 0.981 1.021 5 3.750 151 168.873 9.415 0.056 1.000 0.975 1.019 6 3.600 105 142.975 10.044 0.070 1.000 0.976 1.023 7 3.450 133 120.568 9.060 0.075 1.000 0.970 1.027 8 3.300 161 118.727 7.351 0.062 0.999 0.975 1.022 9 3.150 186 122.526 9.349 0.076 1.000 0.968 1.034 10 3.000 245 112.952 7.870 0.070 1.001 0.975 1.023 Total: 1743 157.855 10.408 0.066 1.000 Dispersive differences lambda 3 - lambda 2 Differences by shell: shell dmin nobs Fbar delta R scale min max 1 6.000 228 209.659 12.041 0.057 1.002 0.977 1.029 2 4.500 300 197.719 10.844 0.055 0.999 0.978 1.021 3 4.200 112 188.184 9.940 0.053 1.000 0.984 1.014 4 3.975 112 161.106 8.486 0.053 1.000 0.979 1.022 5 3.750 147 163.077 8.896 0.055 0.999 0.978 1.021 6 3.600 107 146.419 7.654 0.052 1.001 0.984 1.019 7 3.450 132 121.165 7.734 0.064 1.000 0.978 1.026 8 3.300 163 120.809 6.787 0.056 1.000 0.974 1.022 9 3.150 184 121.111 7.052 0.058 1.000 0.978 1.021 10 3.000 244 111.576 6.403 0.057 1.000 0.979 1.020 Total: 1729 156.780 8.777 0.056 1.000 anomalous differences lambda 1 Differences by shell: shell dmin nobs Fbar delta R scale min max 1 6.000 229 213.329 15.227 0.071 1.002 0.973 1.031 2 4.500 306 200.339 15.261 0.076 1.002 0.972 1.025 3 4.200 117 192.324 13.916 0.072 1.001 0.968 1.029 4 3.975 114 161.424 10.801 0.067 1.001 0.979 1.023 5 3.750 149 165.499 11.633 0.070 1.000 0.977 1.023 6 3.600 106 144.434 8.925 0.062 1.001 0.967 1.028 7 3.450 137 124.975 9.337 0.075 1.000 0.977 1.024 8 3.300 165 123.353 9.676 0.078 1.001 0.969 1.031 9 3.150 185 122.098 9.942 0.081 1.001 0.977 1.031 10 3.000 246 112.374 7.804 0.069 1.001 0.975 1.022 Total: 1754 158.915 11.591 0.073 1.001 anomalous differences lambda 2 Differences by shell: shell dmin nobs Fbar delta R scale min max 1 6.000 223 202.416 15.839 0.078 1.003 0.971 1.038 2 4.500 303 198.520 14.266 0.072 1.002 0.972 1.034 3 4.200 114 187.589 11.997 0.064 0.999 0.972 1.024 4 3.975 118 169.676 12.176 0.072 0.999 0.976 1.030 5 3.750 148 162.672 12.862 0.079 0.999 0.970 1.025 6 3.600 110 149.508 12.945 0.087 0.999 0.968 1.030 7 3.450 138 127.900 10.408 0.081 1.000 0.972 1.025 8 3.300 165 122.626 10.577 0.086 1.002 0.966 1.033 9 3.150 183 121.368 9.201 0.076 1.001 0.970 1.035 10 3.000 248 112.803 10.876 0.096 1.002 0.973 1.033 Total: 1750 157.307 12.314 0.078 1.001 anomalous differences lambda 3 Differences by shell: shell dmin nobs Fbar delta R scale min max 1 6.000 227 206.272 14.346 0.070 1.004 0.973 1.048 2 4.500 302 198.155 14.188 0.072 1.001 0.973 1.032 3 4.200 115 189.269 14.630 0.077 1.003 0.977 1.038 4 3.975 113 159.629 11.900 0.075 1.000 0.979 1.025 5 3.750 148 166.372 11.280 0.068 1.001 0.975 1.028 6 3.600 108 146.025 11.277 0.077 1.000 0.971 1.033 7 3.450 134 122.133 9.476 0.078 1.000 0.973 1.025 8 3.300 166 122.897 10.098 0.082 1.000 0.975 1.037 9 3.150 187 123.263 10.130 0.082 0.998 0.976 1.022 10 3.000 247 113.973 9.047 0.079 0.999 0.967 1.024 Total: 1747 157.317 11.752 0.075 1.001 ANALYZE_MAD: Run MADMRG and MADBST on MAD data to get ready for SOLVE Form factors at lambda = 0.9782 f-prime = -10.00 f" = 3.00 Form factors at lambda = 0.9779 f-prime = -7.50 f" = 5.00 Form factors at lambda = 0.8856 f-prime = -2.00 f" = 3.50 Correlation of anomalous differences at different wavelengths. (You should probably cut your data off at the resolution where this drops below about 0.3. A good dataset has correlation between peak and remote of at least 0.7 overall. Data with correlations below about 0.5 probably are not contributing much.) CORRELATION FOR WAVELENGTH PAIRS DMIN 1 VS 2 1 VS 3 2 VS 3 6.00 0.14 -0.03 0.10 4.50 0.14 0.20 0.25 4.20 0.02 0.12 0.13 3.98 0.18 -0.01 0.17 3.75 0.18 0.10 0.14 3.60 0.27 0.11 0.23 3.45 0.19 0.21 0.18 3.30 0.29 0.09 0.08 3.15 0.22 0.09 0.35 3.00 0.29 0.12 0.25 ALL 0.17 0.10 0.19 Final refined values of fprime and fdoubleprime Form factors at lambda = 0.9782 f-prime = -10.00 f" = 3.00 Form factors at lambda = 0.9779 f-prime = -7.50 f" = 5.00 Form factors at lambda = 0.8856 f-prime = -2.00 f" = 3.50 Fa Patterson from MADBST to be written to: patterson.patt Script file suitable for running SOLVE written to: solve_mad.script Datafile for SOLVE with MADMRG-compressed dataset ("Fnat",sig,"Fder",sig,"Delano",sig,iso diffs, ano diffs, , from MADBST) is: solve.data ----------NEW DATASET BEGINS HERE--------------- Rescaling standard dataset to put it on approximate absolute scale. NRES = 100; expected = 98000.00 ; observed in lowest resolution shell = 437800.0 ... Scale factor = 0.2238465 Reflections observed: Possible Found % complete shell dmin 1 6.000 239 238 99.6 2 4.500 317 317 100.0 3 4.200 120 120 100.0 4 3.975 120 120 100.0 5 3.750 155 155 100.0 6 3.600 112 112 100.0 7 3.450 143 143 100.0 8 3.300 172 172 100.0 9 3.150 190 189 99.5 10 3.000 254 212 83.5 total 1822 1778 97.6 SCALE_MIR for dataset 1 Scale derivatives to previously-scaled native. Default of "fp_or_fm" ( use either F+ or F- if available) will be used as this flag was not set Analysis of this MIR dataset. Fnative, sigma, and (Fbar,sigma, delano,sig) for 1 derivatives written to: mir_fbar.scl Fnative, sigma, and (F+,sigma,F-,sig) for 1 derivatives written to: mir_fpfm.scl ** Completeness of native data (F > 2.000000 * sigma) Reflections observed: Possible Found % complete shell dmin 1 6.000 239 238 99.6 2 4.500 317 317 100.0 3 4.200 120 120 100.0 4 3.975 120 120 100.0 5 3.750 155 155 100.0 6 3.600 112 112 100.0 7 3.450 143 143 100.0 8 3.300 172 172 100.0 9 3.150 190 189 99.5 10 3.000 254 212 83.5 total 1822 1778 97.6 -------------------------------------------------- *** Analysis of this scaled deriv data set *** ** Completeness of Fbar data for each derivative: ** Derivative 1 set 1 with 1 pt atoms, deriv 1 Reflections observed: Possible Found % complete shell dmin 1 6.000 239 238 99.6 2 4.500 317 317 100.0 3 4.200 120 120 100.0 4 3.975 120 119 99.2 5 3.750 155 155 100.0 6 3.600 112 112 100.0 7 3.450 143 143 100.0 8 3.300 172 172 100.0 9 3.150 190 190 100.0 10 3.000 254 212 83.5 total 1822 1778 97.6 ** R-factors for F-bar data isomorphous differences ** isomorphous differences derivs 1 - native Differences by shell: shell dmin nobs Fbar delta R scale min max 1 6.000 237 224.861 59.479 0.265 1.000 0.918 1.094 2 4.500 317 203.761 50.769 0.249 1.006 0.916 1.112 3 4.200 120 194.183 42.508 0.219 1.007 0.957 1.071 4 3.975 119 164.716 43.653 0.265 1.004 0.917 1.082 5 3.750 154 161.099 41.546 0.258 0.999 0.938 1.088 6 3.600 111 146.201 36.082 0.247 1.005 0.945 1.078 7 3.450 143 133.792 36.481 0.273 1.000 0.933 1.067 8 3.300 172 129.947 36.231 0.279 1.003 0.916 1.073 9 3.150 189 121.205 33.532 0.277 1.005 0.931 1.098 10 3.000 211 113.759 31.608 0.278 1.008 0.946 1.100 Total: 1773 163.688 42.495 0.260 1.004 ** R-factors for anomalous differences ** anomalous differences deriv 1 Differences by shell: shell dmin nobs Fbar delta R scale min max 1 6.000 232 214.433 22.695 0.106 1.000 0.970 1.035 2 4.500 312 197.830 19.490 0.099 1.003 0.962 1.039 3 4.200 118 191.876 17.435 0.091 1.004 0.977 1.040 4 3.975 116 168.350 14.784 0.088 1.003 0.973 1.038 5 3.750 153 159.503 13.383 0.084 1.001 0.956 1.044 6 3.600 110 150.842 14.972 0.099 1.001 0.966 1.037 7 3.450 140 122.727 11.485 0.094 1.001 0.962 1.038 8 3.300 168 132.960 12.178 0.092 0.999 0.955 1.030 9 3.150 187 117.614 10.342 0.088 1.000 0.965 1.036 10 3.000 208 110.489 9.658 0.087 1.000 0.958 1.033 Total: 1744 160.053 15.143 0.095 1.001 Script file suitable for running SOLVE written to: solve_mir.script ------------------------------------------------ Combining a total of 1 MIR and 1 MAD datasets to form a composite dataset ----------NEW DATASET BEGINS HERE--------------- **** SOLVE: Solutions to MIR or SIR datasets ****** Derivatives considered: 3 (NSET) Cross-vectors tested in HASSP: 6 (ICRMAX, DEFAULT=20) HASSP solutions saved per deriv: 30 (NTOPHASSP, DEFAULT=30) Fourier peaks saved per map: 30 (NTOPFOUR, DEFAULT=10) Sites per derivative: 2 (NSOLSITE, DEFAULT=20) Derivative solutions per seed: 5 (NTOPDERIV, DEFAULT=5) Seeds per derivative tested: 3 (NSEEDTEST,DEFAULT=10) Sorted seeds to use 5 (NSEEDSOLVE, DEFAULT=5) Number of final solutions saved: 5 (NTOPSOLVE, DEFAULT=5) Sites per derivative vary with derivative. Derivative Max sites 1 2 2 -1 3 1 Solutions obtained will be compared to input solution (ICHECKSOLVE) Correlated phasing used (CORRELPHASE) Patterson map for derivative 1 will be read directly from: patterson.patt For derivative 1 the heavy atom structure factor components parallel to and perpendicular to the native structure factor will be read from columns 9 and 10 Standard difference fouriers will be calculated for derivative 2 Standard difference fouriers will be calculated for derivative 3 For derivative 3 the corresponding native data will be read from columns 11 and 12 For derivative 3 the corresponding native dataset is "derivative" 2 Datafile with 16 columns of data: Title:solve.data (cols 1 to 10) and mir_fbar.scl Data: madmrg: MOCK FNAT Data: madmrg: MOCK sig FNAT Data: madmrg: MOCK FDER Data: madmrg: MOCK sig FDER Data: madmrg: MOCK DEL ANO Data: madmrg: MOCK sig DEL ANO Data: madmrg: Del iso for Patterson Data: madmrg: Sigma of del iso for Patterson Data: = Fa component along Fo weighted by fom Data: = weighted Fa component perpendicular to Fo Data: Native F data Data: Native sigma of F data Data: Fbar set 1 with 1 pt atoms, deriv 1 Data: Sig of Fbar set 1 with 1 pt atoms, deriv 1 Data: Del Ano (F+ - F-) set 1 with 1 pt atoms, deriv 1 Data: sig of Del Ano set 1 with 1 pt atoms, deriv 1 Fnat,sigma taken from columns 1 2 Fder,sig,Delano,sig deriv 1 from cols: 3 4 5 6 Fder,sig,Delano,sig deriv 2 from cols: 11 12 0 0 Fder,sig,Delano,sig deriv 3 from cols: 13 14 15 16 Check solution to be compared to all solutions found: Derivative 1: Site X Y Z 1 0.440 0.160 0.380 2 0.230 0.450 0.165 3 0.180 0.530 0.770 Derivative 2: Site X Y Z Derivative 3: Site X Y Z 1 0.180 0.530 0.770 ********************************************************** ANALYZE_SOLVE: analysis of top 1 solutions ************************************************************* Solution 1 *********************** Analysis of this solution ************* ****** Analysis of non-randomness of native Fourier map ****** A. Maps with distinct solvent regions havea high standard deviation of local r.m.s. electron density. For this map the SD of this local r.m.s. is 0.2513511 B. Maps with distinct solvent regions also have a high correlation of local r.m.s. electron density with density at neighboring locations. Typical values for poor maps in this structure solution are 0.1020788 +/- 6.8904713E-02 For this map the correlation of r.m.s. density in neighboring boxes is 0.1960344 The correlation coefficient is used here in scoring. ****** Analysis of derivative solutions with the difference Patterson ****** and with cross-validation difference Fouriers ----------------------------------------------- Derivative # 1 List of sites analyzed for compatibility with difference Patterson PEAK X Y Z OPTIMIZED RELATIVE OCCUPANCY 1 0.438 0.167 0.385 70.795 2 0.229 0.458 0.167 67.132 Evaluation of this test soln with 2 sites after optimizing occupancy of each site Cross-vectors for sites 1 and 1 (excluding origin; 1000 = 1 sigma): # U V W HEIGHT PRED HEIGHT SYMM# 1 -0.875 0.000 -0.771 8356.43 10024.0 2 Cross-vectors for sites 2 and 1 (excluding origin; 1000 = 1 sigma): # U V W HEIGHT PRED HEIGHT SYMM# 1 -0.208 0.292 -0.219 8303.52 4752.64 1 2 -0.667 0.292 -0.552 8334.94 4752.64 1 Cross-vectors for sites 2 and 2 (excluding origin; 1000 = 1 sigma): # U V W HEIGHT PRED HEIGHT SYMM# 1 -0.458 0.000 -0.333 7124.13 9013.42 2 Overall quality of this Patterson soln = 8836.44 Overall quality of the fit to patterson = 2.52158 Avg normalized peak height = 3951.77 Cross-validation fouriers calculated with all heavy atoms in all derivs except the site being evaluated and any sites equivalent to it. Site x y z occ B -- PEAK HEIGHT -- 1 0.439 0.160 0.381 0.565 19.507 13.28 2 0.228 0.453 0.165 0.348 15.000 12.60 ----------------------------------------------- Derivative # 2 Cross-validation fouriers calculated with all heavy atoms in all derivs except the site being evaluated and any sites equivalent to it. Site x y z occ B -- PEAK HEIGHT -- ----------------------------------------------- Derivative # 3 List of sites analyzed for compatibility with difference Patterson PEAK X Y Z OPTIMIZED RELATIVE OCCUPANCY 1 0.318 0.000 0.229 104.531 Evaluation of this test soln with 1 sites after optimizing occupancy of each site Cross-vectors for sites 1 and 1 (excluding origin; 1000 = 1 sigma): # U V W HEIGHT PRED HEIGHT SYMM# 1 -0.635 0.000 -0.458 21853.5 21853.5 2 Overall quality of this Patterson soln = 7726.37 Overall quality of the fit to patterson = 0.138107E-05 Avg normalized peak height = 5463.37 Cross-validation fouriers calculated with all heavy atoms in all derivs except the site being evaluated and any sites equivalent to it. Site x y z occ B -- PEAK HEIGHT -- 1 0.320 0.000 0.230 0.495 24.385 16.20 Summary of scoring for this solution: -- over many solutions-- -- this solution -- Criteria MEAN SD VALUE Z-SCORE Pattersons: 4.46 2.22 9.96 2.48 Cross-validation Fourier: 10.4 2.96 31.9 7.25 NatFourier CCx100: 10.2 6.89 19.6 1.36 Mean figure of meritx100: 0.000E+00 8.71 66.2 7.60 Correction for Z-scores: -4.94 Overall Z-score value: 13.8 ****** Overall analysis of phasing for solution 1************ HEAVY: Refine heavy atom parameters File title: CRYSTALLOGRAPHIC PARAMETERS A = 76.00 B = 28.00 C = 42.00 alpha = 90.00 beta = 103.00 gamma = 90.00 PHASES CALCULATED EVERY 5 DEGREES RESIDUALS CALCULATED ON EXTRA ZEROTH CYCLE ONLY SIGMAS FROM data FILE WILL BE USED STATISTICS WILL BE PRINTED ON ZEROTH CYCLE, SHIFTS ON LAST PHASING WILL BE DONE TAKING INTO ACCOUNT THE CORRELATIONS AMONG DERIVATIVES THE GROUPS OF DERIVATIVES WITH CORRELATIONS WILL BE UPDATED THE BETA VALUES FOR EACH DERIV WILL BE SET TO 1.0 PHASE-AVERAGED RESIDUALS WILL BE USED FOR PHASING TYPE OF REFINEMENT SELECTED: UNPHASED ORIGIN-REMOVED PATTERSON REFINEMENT ONLY Bayesian Correlated Phasing will be used RESOLUTION LIMITS IN ANGSTROMS: 3.000 20.000 MINIMUM RATIO OF FDER TO RMS LACK-OF-CLOSURE FOR INCLUSION IN REFINEMENT OR PHASING= 0.000 MINIMUM NATIVE F: 0.000 MINIMUM FIGURE OF MERIT FOR PHASED REFINEMENT: 0.000 MINIMUM ALLOWED ISOTROPIC B: 0.000 PARAMETER SHIFTS GREATER THAN 0.0000 TIMES SIGMA WILL BE SCALED BY 0.5000 MINIMUM RATIO OF FNAT/SIGMA OR FDER/SIGMA TO INCLUDE: 1.000 NUMBER OF REFINEMENT CYCLES IS 2 DERIVATIVES REFINED DURING THESE CYCLES ARE : 0 0 TYPE OF OUTPUT SELECTED IS: +10 COLUMNS OF HENDRICKSON-LATTMAN COEFFICIENTS data COLUMNS FOR NATIVE F AND SIGMA: 1 2 data COLUMNS FOR BEST AND MOST PROB PHASES AND FIGURE OF MERIT: 0 0 0 OVERALL SCALE FACTOR FOR ALL data = 1.000 SCALE FACTOR FOR NATIVE SIGMAS = 1.000 DERIVATIVE INFORMATION FOR 3 COMPOUNDS COMPOUND 1 set 1 with 1 pt atoms, deriv 1 COLUMNS FOR F, SIGMA, AND ANOM DIFF and sig (=F+ - F-) 3 4 5 6 THIS DERIVATIVE WILL BE USED IN PHASING ANOMALOUS DIFFERENCES WILL BE USED IN PHASING FOR THIS DERIVATIVE AFTER OVERALL SCALING OBSERVED STRUCTURE FACTORS AND SIGMAS WILL BE DIVIDED BY : 1.000*EXP( 0.000*(SIN theta/LAMBDA)**2 ) THEN SIGMAS WILL BE MULTIPLIED BY 1.000 COMPOUND 2 Native from dataset # 2 (an MIR set) used as a deriv. COLUMNS FOR F, SIGMA, AND ANOM DIFF and sig (=F+ - F-) 11 12 0 0 THIS DERIVATIVE WILL BE USED IN PHASING OVERALL SCALING FOR THIS DERIVATIVE WILL BE REFINED AFTER OVERALL SCALING OBSERVED STRUCTURE FACTORS AND SIGMAS WILL BE DIVIDED BY : 1.000*EXP( 0.000*(SIN theta/LAMBDA)**2 ) THEN SIGMAS WILL BE MULTIPLIED BY 1.000 COMPOUND 3 set 1 with 1 pt atoms, deriv 1 COLUMNS FOR F, SIGMA, AND ANOM DIFF and sig (=F+ - F-) 13 14 0 0 THIS DERIVATIVE WILL BE USED IN PHASING OVERALL SCALING FOR THIS DERIVATIVE WILL BE REFINED AFTER OVERALL SCALING OBSERVED STRUCTURE FACTORS AND SIGMAS WILL BE DIVIDED BY : 0.933*EXP( 0.000*(SIN theta/LAMBDA)**2 ) THEN SIGMAS WILL BE MULTIPLIED BY 1.000 CARRYING OUT STANDARD REFINEMENT Total of 2 cycles will be done Derivs refined will be 0 0 SUMMARY OF RESULTS ON FINAL CYCLE: NUMBER OF REFLECTIONS READ = 1822 NUMBER OF F .GT. FMIN = 1804 NUMBER OF F IN RES. LIMITS = 1804 NUMBER OF F .GT. MIN = 1802 NUMBER OF F USED TO REFINE = 0 FIGURE OF MERIT < 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 # OF REFLECTIONS 63 88 105 93 144 133 203 262 336 377 FIGURE OF MERIT WITH RESOLUTION DMIN: TOTAL 9.91 6.56 5.22 4.46 3.96 3.60 3.32 3.09 N: 1804 104 150 197 218 246 277 296 316 MEAN FIG MERIT: 0.66 0.69 0.72 0.65 0.62 0.66 0.67 0.67 0.64 COMPOUND 1 set 1 with 1 pt atoms, deriv 1 DMIN: TOTAL 9.91 6.56 5.22 4.46 3.96 3.60 3.32 3.09 CENTRIC REFLNS: 261. 33. 35. 31. 31. 36. 34. 33. 28. RMS HA F: 35.5 47.8 41.1 41.4 30.4 36.3 29.3 23.0 25.4 RMS RESIDUAL: 37.7 45.6 44.9 26.2 36.1 29.7 56.4 26.4 15.6 RMS(FH)/RMS(E): 0.94 1.05 0.91 1.58 0.84 1.22 0.52 0.87 1.63 CENTRIC R FACT: 0.54 0.48 0.59 0.44 0.60 0.54 0.59 0.57 0.43 ACENTRIC REFLN: 1528. 70. 115. 165. 185. 210. 238. 258. 287. RMS DERIV FPH: 192.1 316.2 222.2 230.9 232.9 198.0 157.5 145.6 135.3 RMS SIGMA FPH: 38.7 79.0 40.3 45.4 43.4 42.3 32.2 26.9 24.0 RMS SIGMA FP: 38.9 79.4 40.8 46.0 42.5 42.7 32.4 27.3 24.3 RMS HA F: 32.1 45.8 40.8 38.4 34.5 31.7 30.1 26.3 24.1 RMS RESIDUAL: 38.7 55.4 47.7 56.3 41.3 40.2 30.7 28.5 26.6 RMS(FH)/RMS(E): 0.83 0.83 0.85 0.68 0.83 0.79 0.98 0.92 0.91 ANOM DIFFS: 1528. 70. 115. 165. 185. 210. 238. 258. 287. RMS OBS DIFF: 14.3 19.7 18.6 17.2 16.3 13.4 12.7 11.8 11.3 RMS CALC DIFF: 9.7 12.6 11.6 11.0 10.1 9.8 9.6 8.5 7.7 RMS RESIDUAL: 11.9 18.1 14.8 14.7 14.4 11.0 10.1 9.2 9.1 RATIO ISO/ANO: 4.65 5.15 4.99 4.83 4.68 4.56 4.44 4.33 4.23 ESTIMATES OF LACK-OF-CLOSURE RESIDUALS LESS AVERAGE VALUE OF SIGMAS IN data (AS INPUT TO NEXT CYCLE) CENTRIC LOC: 0.0 0.0 0.0 0.0 0.0 45.7 2.4 0.0 ANOMALOUS LOC: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 RMS FPH : 316.2 222.2 230.9 232.9 198.0 157.5 145.6 135.3 RMS FH : 45.8 40.8 38.4 34.5 31.7 30.1 26.3 24.1 RMS SIGMA: 112.0 57.3 64.7 60.7 60.1 45.7 38.3 34.1 COMPOUND 2 Native from dataset # 2 (an MIR set) used as a deriv. DMIN: TOTAL 9.91 6.56 5.22 4.46 3.96 3.60 3.32 3.09 CENTRIC REFLNS: 259. 32. 35. 31. 31. 36. 34. 32. 28. RMS HA F: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 RMS RESIDUAL: 72.3 93.2 59.2 90.2 71.3 78.5 59.6 66.0 47.2 RMS(FH)/RMS(E): 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 CENTRIC R FACT: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 ACENTRIC REFLN: 1502. 71. 115. 166. 187. 210. 243. 263. 247. RMS DERIV FPH: 193.0 321.8 217.1 231.8 231.3 192.1 160.5 149.4 133.4 RMS SIGMA FPH: 15.2 25.0 17.0 18.3 18.1 15.2 12.7 11.7 10.5 RMS SIGMA FP: 39.0 79.0 40.8 46.0 42.3 42.7 32.2 27.2 23.5 RMS HA F: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 RMS RESIDUAL: 68.2 82.9 65.3 85.2 82.3 65.5 57.8 59.3 60.6 RMS(FH)/RMS(E): 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ESTIMATES OF LACK-OF-CLOSURE RESIDUALS LESS AVERAGE VALUE OF SIGMAS IN data (AS INPUT TO NEXT CYCLE) CENTRIC LOC: 63.2 44.8 75.5 59.4 67.7 53.4 62.3 43.4 RMS FPH : 321.8 217.1 231.8 231.3 192.1 160.5 149.4 133.4 RMS FH : 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 RMS SIGMA: 82.8 44.2 49.5 46.0 45.3 34.7 29.6 25.7 COMPOUND 3 set 1 with 1 pt atoms, deriv 1 DMIN: TOTAL 9.91 6.56 5.22 4.46 3.96 3.60 3.32 3.09 CENTRIC REFLNS: 260. 32. 35. 31. 31. 36. 34. 33. 28. RMS HA F: 70.8 96.0 86.6 74.7 72.0 63.2 54.1 56.6 47.4 RMS RESIDUAL: 76.4 95.0 58.7 87.2 84.2 81.5 57.9 79.1 57.8 RMS(FH)/RMS(E): 0.93 1.01 1.48 0.86 0.85 0.78 0.93 0.72 0.82 CENTRIC R FACT: 0.59 0.49 0.59 0.58 0.67 0.59 0.59 0.63 0.56 ACENTRIC REFLN: 1501. 71. 115. 166. 187. 209. 243. 263. 247. RMS DERIV FPH: 206.1 339.4 242.6 250.5 243.4 202.0 171.6 159.3 141.6 RMS SIGMA FPH: 11.6 19.3 13.4 14.1 13.8 11.3 9.6 9.0 7.9 RMS SIGMA FP: 39.0 79.0 40.8 46.0 42.3 42.5 32.2 27.2 23.5 RMS HA F: 65.0 91.9 86.8 78.9 69.2 64.5 57.1 53.2 47.1 RMS RESIDUAL: 66.1 85.1 62.3 86.4 79.7 64.4 52.2 55.9 57.3 RMS(FH)/RMS(E): 0.98 1.08 1.39 0.91 0.87 1.00 1.09 0.95 0.82 ESTIMATES OF LACK-OF-CLOSURE RESIDUALS LESS AVERAGE VALUE OF SIGMAS IN data (AS INPUT TO NEXT CYCLE) CENTRIC LOC: 68.0 45.8 73.2 75.4 72.0 52.0 76.3 54.9 RMS FPH : 339.4 242.6 250.5 243.4 202.0 171.6 159.3 141.6 RMS FH : 91.9 86.8 78.9 69.2 64.5 57.1 53.2 47.1 RMS SIGMA: 81.3 42.9 48.1 44.5 44.0 33.7 28.6 24.8 Analysis of correlated modeling and non-isomorphism errors obtained using phased residuals. The derivatives were grouped into 2 sets where the members of a set had some mutual correlation. Set 1 contains derivatives 1 Set 2 contains derivatives 2 3 SUMMARY OF CORRELATED ERRORS AMONG DERIVATIVES DERIVATIVE: 1 CENTRIC REFLECTIONS: DMIN: ALL 9.91 6.56 5.22 4.46 3.96 3.60 3.32 3.09 RMS errors correlated and uncorrelated with others in group: Correlated: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Uncorrelated: 16.5 0.0 0.0 0.0 0.0 0.0 45.7 2.4 0.0 Correlation of errors with other derivs: DERIV 2: 0.14 0.17 0.16 0.13 0.21 0.10 0.00 0.37 0.11 DERIV 3: 0.16 0.21 0.15 0.15 0.27 0.05 0.01 0.32 0.18 ACENTRIC REFLECTIONS: DMIN: ALL 9.91 6.56 5.22 4.46 3.96 3.60 3.32 3.09 Errors correlated and uncorrelated with others in group: Correlated: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Uncorrelated: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Correlation of errors with other derivs: DERIV 2: 0.34 0.32 0.47 0.51 0.33 0.25 0.29 0.30 0.34 DERIV 3: 0.33 0.28 0.43 0.49 0.31 0.25 0.24 0.30 0.33 DERIVATIVE: 2 CENTRIC REFLECTIONS: DMIN: ALL 9.91 6.56 5.22 4.46 3.96 3.60 3.32 3.09 RMS errors correlated and uncorrelated with others in group: Correlated: 56.3 44.5 39.2 73.6 63.0 60.7 50.3 64.9 46.2 Uncorrelated: 22.7 45.0 21.7 17.2 0.0 30.2 17.8 0.0 0.0 Correlation of errors with other derivs: DERIV 1: 0.14 0.17 0.16 0.13 0.21 0.10 0.00 0.37 0.11 DERIV 3: 0.82 0.67 0.79 0.95 0.87 0.78 0.90 0.87 0.88 ACENTRIC REFLECTIONS: DMIN: ALL 9.91 6.56 5.22 4.46 3.96 3.60 3.32 3.09 Errors correlated and uncorrelated with others in group: Correlated: 69.3 0.0 57.8 92.6 89.1 61.9 53.9 66.1 71.3 Uncorrelated: 31.8 2.5 35.9 32.4 36.9 25.5 37.0 30.2 30.4 Correlation of errors with other derivs: DERIV 1: 0.34 0.32 0.47 0.51 0.33 0.25 0.29 0.30 0.34 DERIV 3: 0.87 0.87 0.83 0.87 0.88 0.89 0.83 0.89 0.90 DERIVATIVE: 3 CENTRIC REFLECTIONS: DMIN: ALL 9.91 6.56 5.22 4.46 3.96 3.60 3.32 3.09 RMS errors correlated and uncorrelated with others in group: Correlated: 56.3 44.5 39.2 73.6 63.0 60.7 50.3 65.0 46.2 Uncorrelated: 33.7 51.4 23.7 0.0 41.5 38.9 13.0 40.1 29.6 Correlation of errors with other derivs: DERIV 1: 0.16 0.21 0.15 0.15 0.27 0.05 0.01 0.32 0.18 DERIV 2: 0.82 0.67 0.79 0.95 0.87 0.78 0.90 0.87 0.88 ACENTRIC REFLECTIONS: DMIN: ALL 9.91 6.56 5.22 4.46 3.96 3.60 3.32 3.09 Errors correlated and uncorrelated with others in group: Correlated: 69.3 0.0 57.8 92.6 89.1 62.1 53.9 66.1 71.3 Uncorrelated: 22.0 31.7 21.7 39.5 25.1 21.0 13.3 13.2 13.0 Correlation of errors with other derivs: DERIV 1: 0.33 0.28 0.43 0.49 0.31 0.25 0.24 0.30 0.33 DERIV 2: 0.87 0.87 0.83 0.87 0.88 0.89 0.83 0.89 0.90 PARAMETER SHIFTS FOR DERIV 1 : set 1 with 1 pt atoms, deriv 1 SCALE FACTOR OVERALL B CURRENT VALUES: 1.0000 0.0000 SITE ATOM OCCUP X Y Z B CURRENT VALUES: 1 LAM2 0.5652 0.4389 0.1600 0.3813 19.5066 CURRENT VALUES: 2 LAM2 0.3476 0.2285 0.4528 0.1654 15.0000 PARAMETER SHIFTS FOR DERIV 2 : Native from dataset # 2 (an MIR set) used as a deriv. SCALE FACTOR OVERALL B CURRENT VALUES: 1.0000 0.0000 SITE ATOM OCCUP X Y Z B CURRENT VALUES: 1 NATV 0.0100 0.0000 0.0000 0.0000 0.0000 PARAMETER SHIFTS FOR DERIV 3 : set 1 with 1 pt atoms, deriv 1 SCALE FACTOR OVERALL B CURRENT VALUES: 0.9333 0.0000 SITE ATOM OCCUP X Y Z B CURRENT VALUES: 1 Pt 0.4955 0.3199 0.0000 0.2303 24.3847 ************************************************************* ************************************************************* *** Summary of solutions and their relationships to each other and to check solution *** ---------------------------------------------------------- solution # 1 with overall quality = 13.75319 Derivative 1 with 2 sites. Overall scale = 1.000000 and overall b of 0.0000000E+00 0.4388571 0.1600000 0.3813444 0.5652075 19.50664 0.2284853 0.4528199 0.1654302 0.3475575 15.00000 Derivative 3 with 1 sites. Overall scale = 0.9332663 and overall b of 0.0000000E+00 0.3199098 0.0000000E+00 0.2303279 0.4954703 24.38469 Best match of solution 1 -> solution 2: -------- solution 1 -------- -------------solution 2 ------ site x y z site x y z DIST (A) Derivative 1 1 0.439 0.160 0.381 1 0.440 0.160 0.380 0.11 2 0.228 0.453 0.165 2 0.230 0.450 0.165 0.14 Derivative 3 1 0.320 0.000 0.230 1 0.320 0.030 0.230 0.84 Comparison of this solution with check solution: Number of sites in this solution matching check= 3 ... and number not matching = 0 by derivative, this is... Deriv nsame ndifferent 1 2 0 2 0 0 3 1 0 All sites in this solution are contained in check soln